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Abstract
We present a detailed calculation of the distance-dependent two-point function
for quadrangulations with no multiple edges. Various discrete observables
measuring this two-point function are computed and analyzed in the limit of
large maps. For large distances and in the scaling regime, we recover the
same universal scaling function as for general quadrangulations. We then
explore the geometry of ‘minimal neck baby universes’ (minbus), which are
the outgrowths to be removed from a general quadrangulation to transform
it into a quadrangulation with no multiple edges, the ‘mother universe’. We
give a number of distance-dependent characterizations of minbus, such as the
two-point function inside a minbu or the law for the distance from a random
point to the mother universe.

PACS numbers: 02.10.Ox, 02.50.−r, 04.60.−m

(Some figures in this article are in colour only in the electronic version)

1. Introduction

1.1. The problem

The study of random maps is an active field of research which raises beautiful combinatorial
and probabilistic problems. In particular, maps are used in physics as discrete models for
fluctuating surfaces in a wide range of domains, like the study of biological membranes or
string theory. Random maps can be equipped with statistical models, such as Ising spins,
dimers, hard particles, and give rise to a large variety of critical phenomena, described in
the physics literature by the so-called two-dimensional quantum gravity [1, 2]. For large
maps, several sensible scaling limits of continuous surfaces can be reached, depending on the
universality class of the model at hand. Of particular interest is the so-called Brownian map
[3, 4], which describes the scaling limit of large non-critical planar maps (in the universality
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class of the so-called pure gravity), like maps with prescribed face degrees, for instance planar
triangulations (maps with faces of degree 3 only) or planar quadrangulations (maps with faces
of degree 4 only).

The Brownian map was shown to have the topology of the two-dimensional sphere
[5, 6], but it has nevertheless surprising geometrical properties, which place it half-way
between a tree-like object and a smooth surface. For instance, it was shown that, as would
happen in a tree, two geodesic paths leading to a given point in the map merge into a common
geodesic before reaching this point. This is the so-called confluence phenomenon [7], which
reveals some underlying tree-like structure of the Brownian map. On the other hand, it was
shown that the triangle formed by three geodesic paths linking three points in the map delimit
two macroscopic (interior and exterior) regions, like in a smooth surface [8, 9]. Heuristically, it
was claimed that large maps can be viewed as made of a large component, the ‘mother universe’
with attached small components, the ‘baby universes’ arranged into tree-like structures (see
for instance [10]). A proper definition of mother and baby universes is however lacking so far,
which prevents from making this statement more precise.

Besides this qualitative picture of the Brownian map, precise quantitative measures of its
geometry could be obtained, such as the two-point function [11–13], which gives the profile
of distances between two random points in the map, and the three-point function [8], which
gives the joint law for the three distances between three random points. In particular, the two-
and three-point functions could be computed exactly at the discrete level in the context of
general planar quadrangulations. Here, by general quadrangulations, we mean all maps with
faces of degree 4 only. These maps cannot have loops (since they are clearly bipartite), but
they may have multiple edges, creating cycles of length 2. Each of these cycles acts as a neck
separating the quadrangulation into two components. Now we may imagine cutting the map
along all its cycles of length 2, thus disconnecting it into several pieces. It was shown [14, 15]
that, for quadrangulations with a large number n of faces, exactly one of these pieces has a size
(= number of faces) of order n, while all the others have sizes negligible with respect to n. This
provides a proper definition of a mother and a baby universe: the large component constitutes
the mother universe. Upon gluing each of the cut cycles touching this component into a
single edge, the mother universe may itself be viewed as a planar quadrangulation which, by
construction, has no multiple edges. The other pieces, once reglued together, form a number
of connected branched structures, each with a boundary of length 2. Each of these branched
structures constitutes a baby universe, to be glued by its boundary to the mother universe to
complete the quadrangulation.

It is well known that general planar (rooted) quadrangulations with n faces are in
one-to-one correspondence with (rooted) general planar maps with n edges. Under this
equivalence, the above decomposition of quadrangulations simply corresponds to the well-
known decomposition of general maps into 2-connected components upon splitting them at
their separating vertices.

It is clear that we have here a very restrictive definition of baby universes, the so-called
minimal neck baby universes [16], hereafter abbreviated into minbus and corresponding to
cutting the map along necks of minimal size 2. Unfortunately, the overlaps between cycles
of larger sizes prevent from defining a canonical decomposition into more general baby
universes.

Rather than considering general quadrangulations, we may at first start with the more
restricted class of quadrangulations with no multiple edges (in one-to-one correspondence
with 2-connected maps via the above-mentioned equivalence). These quadrangulations have
no cycles of length 2 by definition, hence are reduced to their mother universe, with no
minbus. It is expected that, for large distances, the two- and three-point functions of these
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quadrangulations with no multiple edges be essentially the same as those of general maps
since the presence of minbus should affect only small distances.

The purpose of this paper is twofold. In a first part, we present a detailed calculation
of the two-point function for quadrangulations with no multiple edges. Expressions are
given for various observables measuring this two-point function at the discrete level and then
analyzed in the limit of large maps. Although different from that of general quadrangulations
at finite distances, they give the same two-point function at large distances and in particular
in the universal scaling regime. In a second part, we use the connection between general
quadrangulations and quadrangulations with no multiple edges inherited from the above
decomposition into the mother universe and minbus to explore a number of distance-dependent
characterizations of the minbus themselves in general quadrangulations. We compute for
instance the two-point function inside a minbu or the law for the distance from a random point
to the mother universe.

The paper is organized as follows. In the second part of section 1, we recall the known
results on the two-point function for general quadrangulations. These results are based on
the Schaeffer bijection which encodes quadrangulations by the so-called well-labeled trees.
In section 2.1 we introduce the more restricted family of well-balanced trees which code for
quadrangulations with no multiple edges. Generating functions for these well-balanced trees
are then computed either directly by solving the appropriate recursion relation (section 2.2) or
indirectly via a substitution procedure relating them to generating functions for regular well-
labeled trees (section 2.3). We end section 2 by deriving expressions for various quantities
measuring, at the discrete level, the two-point function of quadrangulations with no multiple
edges (section 2.4). These results are used in section 3 to address various questions on the
two-point distance statistics. We first give explicit enumerations for small distances and small
sizes in section 3.1, and discuss in section 3.2 the case of finite distances in quadrangulations
of large size n (the local limit). We then explore in section 3.3 the scaling limit of large
distances (∝ n1/4) in large quadrangulations and recover the universal two-point function of
the Brownian map. Section 4 is devoted to the study of minbus in general quadrangulations.
We first recall in section 4.1 how to cut a general quadrangulation along minimal necks so as
to decompose it into a mother universe and minbus. We then explain in section 4.2 the precise
meaning of our generating functions for well-balanced trees in this context. We finally obtain
in section 4.3 a number of distance-dependent properties of minbus such as the probability
for two points to lie in the same minbu as a function of their mutual distance as well as the
two-point function inside a minbu. The law for the distance to the mother universe or for the
number of necks to go through to reach it is derived in the appendix. We end this paper by a
few concluding remarks in section 5.

1.2. General quadrangulations and well-labeled trees: reminders

In the case of general quadrangulations, a fruitful approach to questions on the distance
statistics relies on the Schaeffer bijection between quadrangulations and well-labeled trees
[17]. It consists in a one-to-one coding of pointed (i.e. with a marked vertex called the origin)
quadrangulations with n faces by well-labeled trees with n edges, i.e. plane trees whose vertices
carry integer labels subject to the two conditions:

(i) the labels of two vertices adjacent in the tree differ by at most 1;
(ii) the minimum label is 1.
The n+1 vertices of the well-labeled tree are in one-to-one correspondence with the (n+2)−1
vertices of the quadrangulation other than the origin, and the label of a vertex in the tree
is nothing but the distance from the associated vertex to the origin in the quadrangulation.
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Moreover, the 2n corners of the tree are in one-to-one correspondence with the 2n edges of
the quadrangulation. By corner, we mean the angular sector between two consecutive edges
around a vertex of the tree, and if that vertex has label � we also say that the corner has label
�. The corners with label � in the tree are in one-to-one correspondence with the edges of
type (�− 1) → � in the quadrangulation, i.e. the edges connecting a vertex at distance (�− 1)

from the origin to a vertex at distance �. Finally, the edges of the tree are in one-to-one
correspondence with the faces of the quadrangulation.
A planted tree is a (plane) tree with a marked corner whose label is called the root label. It is
also convenient to introduce almost well-labeled trees where condition (ii) is released into:
(ii)′ the minimum label is larger than or equal to 1.

Attaching a weight g per edge, the generating function R� ≡ R�(g) of planted almost
well-labeled trees with root label � satisfies the recursion relation:

R� = 1

1 − g(R�−1 + R� + R�+1)
(1.1)

for � � 1, with the initial condition R0 = 0. This relation simply states that a tree with root
label � is fully characterized by the sequence of its descending subtrees, which are themselves
planted almost well-labeled trees with root label (� − 1), � or (� + 1). Equation (1.1) implies
in particular the conservation law:

C�+1 = C� with C� ≡ R� − gR�−1R�R�+1, (1.2)

which may also be derived combinatorially [18]. Writing C� = C∞ leads after some simple
manipulations to the explicit solution [13]:

R� = R
(1 − x�)(1 − x�+3)

(1 − x�+1)(1 − x�+2)

where R = 1 − √
1 − 12g

6g
and x +

1

x
+ 1 = 1

gR2
. (1.3)

Here, we introduced the quantity R ≡ lim�→∞ R�, solution of the quadratic equation
R = 1 + 3g R2. Of particular interest is the case � = 1 for which conditions (ii) and
(ii)′ coincide so that R1 is the generating function of well-labeled trees with a marked corner
with label 1. From Schaeffer’s bijection, this is also the generating function of rooted (i.e.
with a marked oriented edge) quadrangulations with a weight g per face. Writing C1 = C∞
gives

R1 = R − gR3. (1.4)

If we now wish to address the question of the two-point function, i.e. the law for the distance
between two ‘points’ (edges or vertices) picked at random in quadrangulations, this can be
done by considering several possible distance-dependent generating functions. For instance,
we may consider pointed quadrangulations with, in addition to their marked origin vertex, a
marked edge of type (�−1) → � with respect to this origin. Let us denote by Q� ≡ Q�(g) the
corresponding generating function with a weight g per face. In the tree language, it enumerates
planted well-labeled trees with root label �. This leads immediately to

Q� = R� − R�−1 (1.5)

since condition (ii) is easily restored from condition (ii)′ by eliminating the configurations
(with root label �) having a minimum label strictly larger than 1, counted by R�−1 by a simple
shift of labels.

Another measure of the two-point distance statistics is via the generating function F�

of rooted quadrangulations having, in addition to their marked oriented root edge, a marked
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or

−1

0
0

0

+11

Figure 1. A schematic picture of the re-rooting procedure, showing that there is a bijection
between, on the one hand, rooted maps with a marked vertex at distance � from the origin of
the root edge and, on the other hand, pointed maps with a marked edge of type (� − 1) → � or
� → (� + 1) with respect to the origin vertex.

vertex at distance � from the origin of the root edge. In the tree language, F� is the generating
function of planted well-labeled trees with a root vertex with label 1 and with an extra marked
vertex with label �. The tree then consists of a chain of almost well-labeled trees attached on
both sides of a linear spine linking these two vertices. Only one subtree with root label � is
attached at the endpoint of the spine. We shall call these configurations vertex-ended chains
and their generating function reads

F� =

⎧⎪⎨
⎪⎩

∑
k�0

∑
paths (1=�0 ,�1 ,...,�k=�)

�i�1, |�i−�i−1 |�1,i=1,...,k

k−1∏
i=0

g(R�i
)2

⎫⎪⎬
⎪⎭ × R� (1.6)

where k is the length of the spine.
Now, by a simple re-rooting procedure, there is a clear bijection between maps with a

marked root edge and a marked vertex at distance � from the origin of the root edge, and maps
with a marked origin and a marked edge of type (� − 1) → � or of type � → (� + 1) with
respect to this origin (see figure 1 for an illustration). This bijection translates into the simple
relation

F� = Q� + Q�+1 = R�+1 − R�−1 (1.7)

for � � 1, a formula which can also be obtained directly by induction from (1.6) by use of the
conservation law.

Finally, a third interesting measure of the two-point distance statistics is via the generating
function H� of rooted quadrangulations having, in addition to the marked oriented root edge,
an extra marked edge of type (� − 1) → � with respect to the origin of the root edge (if � = 1,
we may choose for the extra marked edge the root edge itself, in which case the configuration
is counted with a weight 2 for convenience). In terms of trees, this amounts to replacing the
marked vertex with label � in the configurations counted by F� by a marked corner. This leads
to the same chain of almost well-labeled trees as for F�, with now two trees with label � instead
of one attached to the endpoint of the spine. We shall call these configurations corner-ended
chains and their generating function reads

H� = R� F� = R�+1 R� − R� R�−1 (1.8)

for � � 1.
The generating functions Q�, F� and H�, although clearly different, are equivalently good

measures of the two-point function at the discrete level. In the limit of quadrangulations with
a large number n of faces and for large distances (of order n1/4), they lead to the same distance
statistics, characterized by a unique scaling function, the (universal) continuous two-point
function.
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2. Quadrangulations with no multiple edges and well-balanced well-labeled trees

We now turn to the study of quadrangulations with no multiple edges, i.e. quadrangulations
where all pairs of vertices are linked by at most one edge. As already mentioned, these
(rooted) quadrangulations with n faces are in one-to-one correspondence with (rooted) general
maps with n edges having no separating vertex. Such maps are usually called 2-connected
or nonseparable and were first enumerated in [19–21]. More recently, a bijection between
nonseparable maps and two different families of trees was discovered in [22], which explains
the remarkably simple formula for their number. These trees are (1) so-called description trees
which are a particular class of labeled trees (with arbitrary internal degrees) and (2) so-called
skew ternary trees which are ternary trees with particular positivity constraints.

If the enumeration of quadrangulations with no multiple edges is a well-understood
question, much less is known on their distance statistics. Here we shall present yet another
bijection with labeled trees, obtained by simply restricting the general class of well-labeled
trees in the Schaeffer bijection to a smaller class of well-balanced ones where additional
constraints guarantee that the associated quadrangulation has no multiple edges. Even if it
seems likely that a direct correspondence can be found between these trees and the description
trees of [22], well-balanced trees are particularly adapted to questions involving the distance
and this is the reason why we use them here.

2.1. Well-balanced well-labeled trees

Before we address the question of multiple edges, let us recall how we obtain a pointed
quadrangulation from its associated well-labeled tree in the Schaeffer bijection. First we take
for the vertices of the quadrangulation all the vertices of the tree plus an extra added vertex
with label 0, which will be the origin of the quadrangulation. The edges of the quadrangulation
are then obtained by connecting each corner of the tree with label � to its successor, which is
the first corner at a vertex with label � − 1 encountered clockwise around the tree if � > 1,
or the added vertex with label 0 if � = 1. These connections can be performed without edge
crossings. We finally erase all the original tree edges as well as the vertex labels.

It is now straightforward to deduce under which condition the quadrangulation will have
no multiple edges. First, as any corner at a vertex with label 1 will be linked to the origin, the
absence of multiple edges requires that there is exactly one corner at any vertex with label 1
(see figure 2(a) for a counterexample), namely that:

(a) vertices with label 1 are leaves of the tree.

Consider now a vertex with label � > 1, which we assume is not a leaf of the tree, and consider
two successive corners clockwise around this vertex. Multiple edges will appear in the
quadrangulation if these two corners have the same successor. This occurs if the subtree
attached to the considered vertex and lying between the two considered corners does not
contain any vertex with label � − 1 (see figure 2(b)). A necessary and sufficient condition for
the absence of multiple edges of type � → (� − 1) is that:

(b) each of the k subtrees attached to a vertex of degree k in the tree and with label � > 1
contains a vertex with label � − 1.

Note that this condition is automatically satisfied if the vertex is a leaf (k = 1) with label � > 1
as the only attached subtree is then the entire tree itself (minus the considered vertex) which,
from (i) and (ii), contains all integer labels between 1 and �.

A well-labeled tree satisfying (a) and (b) will be called well-balanced. We have a bijection
between pointed quadrangulations with n faces and with no multiple edges and well-balanced
well-labeled trees with n edges.
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(a)

−1

−1

−1

−1

0

1

(b)

Figure 2. A schematic picture for the appearance of a double edge when reconstructing a
quadrangulation from its associated well-labeled tree. A double edge is found either (a) when
a vertex with label 1 is not a leaf or (b) when the subtree separating two given successive corners
at a vertex with label � > 1 contains no label (� − 1).

2.2. Generating functions for almost well-balanced trees and enumeration of
quadrangulations with no multiple edges

As in section 1.2, let us slightly modify the label constraints on the trees so as to get simpler
generating functions. Let us define almost well-balanced well-labeled trees as planted trees
which are almost well-labeled, i.e. carry integer vertex labels satisfying (i) and (ii)′ above, and
are also almost well-balanced, i.e. satisfy the conditions:

(a)′ vertices with label 1 have no descending subtrees.
(b)′ any descending subtree attached to a vertex with label �′ > 1 in the tree contains a vertex

with label (�′ − 1).

We denote by r� ≡ r�(z) the generating function of these trees with root label � and with a
weight z per edge. If � > 1, condition (a)′ is equivalent to (a) but (b)′ is weaker than (b) as
we do not impose any constraint on the ascending subtrees. Therefore, almost well-balanced
trees are not well-balanced in general. When � = 1, i.e. when the root label itself is 1, (a)′

implies drastically that the whole tree reduces to a single vertex with label 1, with the trivial
generating function

r1 = 1. (2.1)

This is to be contrasted with the generating function p1 ≡ p1(z) of the truly well-balanced
well-labeled trees planted at a vertex with label 1. This generating function, which is also that
of rooted quadrangulations with no multiple edges with a weight z per face, can be obtained as
follows. From (a), the root vertex in this case is necessarily a leaf and either the tree reduces
to two leaves with label 1 connected by a single edge (see figure 3(a)) or the tree is made of a
leaf with label 1 connected by an edge to an almost well-labeled tree planted at a vertex with
label 2 (see figure 3(b)). It is enough to demand that this attached tree be almost well-balanced
as, if so, the entire tree is well-balanced. This is because condition (b) is also clearly satisfied
for ascending subtrees in this case, due to the existence of label 1 at the top of the tree, which,
from (i), ensures that any vertex with label � > 1 has an ancestor vertex in the tree with label
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z

1

1

+

1

2
z

Figure 3. A schematic picture of the relation p1 = z(1 + r2) for the generating function p1 of
well-balanced well-labeled trees planted at a vertex with label 1. This vertex is necessarily a leaf,
linked either to another leaf with label 1 or to an almost well-balanced well-labeled tree with root
label 2, represented here by a gray triangle.

−

−1
−1

−1 −1

−1

k

−k

=

=

+1+1
zzz

z

Figure 4. Top: a schematic picture of relation (2.3) for the generating function r� of almost well-
balanced well-labeled trees with root label �. Any such tree is entirely specified by the sequence of
its descending subtrees (gray triangles), which are themselves almost well-balanced well-labeled
trees with root label (� − 1), � or (� + 1). Each of these subtrees must contain a vertex with label
(� − 1). Bottom: a schematic representation of relation (2.4).

(� − 1). To summarize, the generating function of rooted quadrangulations with no multiple
edges reads

p1 = z + zr2. (2.2)

Let us now derive an explicit expression for the generating functions r�. It may be
obtained in two different ways: we may either get it as the solution of some recursion relation
of the type (1.1), now incorporating the constraint of having almost well-balanced trees. This
approach is presented in detail in this section. Or, as explained in the next section, we may
obtain it directly from the explicit form (1.3) of R� via a simple substitution procedure.

The generating functions r� obey the following relation for � � 1, illustrated in figure 4:

r� = 1

1 − z
(
r

(�−1)
�−1 + r

(�−1)
� + r

(�−1)
�+1

) (2.3)
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where we introduced the generating function r
(k)
� (0 � k � �) for almost well-balanced

well-labeled trees planted at a vertex with label � and satisfying the extra requirement that
they contain a vertex with label k. Equation (2.3) simply states that an almost well-balanced
well-labeled tree with root label � may be viewed as a sequence of almost well-balanced
well-labeled subtrees with root label (� − 1), � or (� + 1), each of them containing a vertex
with label (� − 1).

Now any almost well-balanced well-labeled tree with root label � and with no occurrence
of the label k � � has all its labels strictly larger than k. Shifting all labels by k creates a tree
which is still almost well-balanced and almost well-labeled, and now has root label � − k.
This leads to the relation

r
(k)
� = r� − r�−k (2.4)

with r0 = 0. We have in particular r
(�−1)
�−1 = r�−1 since a label (� − 1) is already present at

the level of the root, r
(�−1)
� = r� − r1 = r� − 1 since a label (� − 1) is automatically present

in each subtree and therefore the only situation with no label (� − 1) is when the tree reduces
to its root vertex. Finally, we have r

(�−1)
�+1 = r�+1 − r2 so that equation (2.3) translates into the

recursion relation

r� = 1

1 − z(r�−1 + r� + r�+1) + z(r1 + r2)
(2.5)

valid for all � � 1. Taking � → ∞ gives

r ≡ lim
�→∞

r� = 1

1 − 3zr + z + zr2
(2.6)

namely

r2 = 3r − 1 +
1 − r

zr
. (2.7)

Writing (2.5) for � and � + 1 as

1 = r�(1 + z(r1 + r2)) − zr�(r�−1 + r� + r�+1)

1 = r�+1(1 + z(r1 + r2)) − zr�+1(r� + r�+1 + r�+2), (2.8)

multiplying the first line by r�+1, the second line by r� and taking the difference leads to the
conservation property

c�+1 = c� with c� ≡ r� − zr�−1r�r�+1 (2.9)

Alternatively, this conservation property may be obtained by the same combinatorial argument
as that for general well-labeled trees [18]: let us consider planted almost well-balanced well-
labeled trees having root label � and containing a vertex with label 1. By definition, their
generating function is r

(1)
� . But also any such tree can be decomposed into three parts as

follows. In the sequence of subtrees attached to the root, let us single out the leftmost one
containing a label 1, which is the first part in our decomposition. The second (resp. third)
part is formed by all subtrees on its left (resp. right) together with the root vertex. It is easily
seen that the three parts are planted almost well-balanced well-labeled trees. Moreover, the
first part has root label � − 1, � or � + 1 and necessarily contains a label 1, the second part
contains no label 1 (therefore by shifting all labels by 1 we obtain a tree with root label � − 1)
and finally the third tree has the root label � and obeys no further constraint. Clearly this
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decomposition is reversible and the total number of edges is decreased by one, leading to the
relation

r
(1)
� = z

(
r

(1)
�−1 + r

(1)
� + r

(1)
�+1

)
r�−1r�, (2.10)

which, together with (2.4), immediately implies the conservation property (2.9).
We now deduce that c� = c1 = 1 for all � � 1, namely

r� = 1 + zr�−1r�r�+1 (2.11)

and in particular

r = 1 + zr3 (2.12)

or explicitly

r = 2√
3z

sin

(
1

3
arcsin

√
27z

4

)
=

∑
n�0

(3n)!

(2n + 1)!n!
zn. (2.13)

From (2.7), we deduce that

r2 = 3r − 1 − r2 = 1 +
∑
n�1

2(3n)!

(2n + 1)!(n + 1)!
zn. (2.14)

From (2.2), the generating function p1 finally reads

p1 = zr(3 − r) =
∑
n�1

2(3n − 3)!

(2n − 1)!n!
zn (2.15)

from which we read off the number of rooted quadrangulations with n faces and with no
multiple edges [19–21]. Here we observe a connection with the formulation of [22] by noting
that r (respectively p1) is precisely the generating function for ternary (respectively skew
ternary) trees.

The conservation law (2.9) is identical to that, (1.2), of general well-labeled trees and
only the precise value of the conserved quantity differs (1 instead of R1). Repeating the
manipulations leading from (1.2) to the explicit form (1.3), we immediately deduce from the
new conservation law (2.9) the form of r� for general �:

r� = r
(1 − y�)(1 − y�+3)

(1 − y�+1)(1 − y�+2)
(2.16)

with r as above and y ≡ y(z) solution of

y +
1

y
+ 1 = 1

zr2
. (2.17)

2.3. Approach by substitution

Rather than solving the recursion relation (2.5), we may alternatively recover the above
expression for r�, as well as all the results in section 2.2, directly from the known form (1.3)
of R� via a substitution procedure as follows.

Starting with an almost well-labeled tree planted at a vertex with label �, as counted by
R�, we may realize conditions (a)′–(b)′ by simply erasing all descending subtrees attached to
vertices with label 1 and, at each vertex with label �′ > 1, erase any of its descending subtrees
which does not contain a label �′ − 1. The remaining tree is clearly an almost well-balanced
well-labeled tree, counted by r�. Conversely, we recover a general almost well-labeled tree
from an almost well-balanced well-labeled one by attaching at each corner with label �′ � 1

10
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an arbitrary well-labeled subtrees with root label �′ and with no label �′ − 1, i.e. with all its
labels larger than or equal to �′. Any such subtree is counted by R1, independently of �′, as
obtained by shifting all labels by �′ − 1. For a planted tree with n edges, there are exactly
2n + 1 corners where to attach the subtrees. This results into the identity

R�(g) = R1(g)r�(g(R1(g))2). (2.18)

Introducing the function z(g) defined as

z(g) ≡ g (R1(g))2 (2.19)

and its inverse function g(z), we may write (2.18) as

r�(z) = R�(g(z))

R1(g(z))
and in particular r(z) = R(g(z))

R1(g(z))
. (2.20)

Using R1 = R − gR3, we may write R/R1 = 1 + gR2
1(R/R1)

3 for g = g(z), leading to the
characterization r = 1 + zr3 of r ≡ r(z), which matches the characterization (2.12) of the
previous section. Combining (2.19) and (2.20), we deduce that

zr(z)2 = g(z)R((g(z))2 (2.21)

so that if x = x(g) is the solution of x + 1/x + 1 = 1/(gR2), then y ≡ y(z) = x(g(z)) is the
solution of y + 1/y + 1 = 1/(zr2), while (2.20) gives explicitly

r�(z) = R(g(z))

R1(g(z))

(1 − (x(g(z))�)(1 − (x(g(z))�+3)

(1 − (x(g(z))�+1)(1 − (x(g(z))�+2)
= r

(1 − y�)(1 − y�+3)

(1 − y�+1)(1 − y�+2)
(2.22)

which is precisely expression (2.16).

2.4. Two-point function for quadrangulation with no multiple edges

In the case of general quadrangulations, we could easily go from almost well-labeled trees (as
counted by R�) to fully well-labeled ones (as counted by Q�, F� or H�). Using (1.5), (1.7)
or (1.8), we could extract from (1.3) explicit expressions for the various discrete versions
of the two-point function. For quadrangulations with no multiple edges, we may again
restore condition (ii) of well-labeled trees from condition (ii)′ of almost well-labeled ones by
considering the analog of Q�, i.e. the generating function q� ≡ q�(z) defined as

q� = r� − r�−1. (2.23)

Unfortunately, the trees counted by q� are in general not well-balanced and restoring condition
(b) from condition (b)′ is not so simple as it requires considering ascending subtrees. As such,
the knowledge of r� or q� is not directly sufficient to answer the question of the two-point
function.

Fortunately, we may circumvent this problem by considering instead the analogs of the
generating functions F� and H� in section 1.2.

More precisely, as in (1.6), we define the generating function f� ≡ f�(z) for almost
well-balanced vertex-ended chains as

f� =

⎧⎪⎨
⎪⎩

∑
k�0

∑
paths (1=�0 ,�1 ,...,�k=�)

�i�1, |�i−�i−1 |�1,i=1,...,k

k−1∏
i=0

z(r�i
)2

⎫⎪⎬
⎪⎭ × r� (2.24)

and the generating function h� ≡ h�(z) for almost well-balanced corner-ended chains:

h� = r�f� (2.25)

11
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Figure 5. A schematic picture of the generating functions f�, h�, e� and g� for chains of almost
well-balanced well-labeled trees. The end of the chain is either a marked vertex with label � (in f�

or e�) or a marked corner with label � (in h� or g�). We ensure that the trees enumerated by g� or
e� are fully well-balanced by forbidding the appearance of label 1 along the spine of the chain and
by demanding that, for each vertex with label k along the spine, the subtree formed by the part of
the spine lying strictly below this vertex and by the attached subtrees contains a label (k − 1).

with one extra subtree with root label � (see figures 5(a) and (b) for an illustration). The
generating function f� satisfies the recursion

f� = δ�,1 + zr�(f�−1r�−1 + f�r� + f�+1r�+1) (2.26)

with f0 = 0, which determines all f� with � � 1 as power series in z from the initial condition
f� = z�−1 + O(z�). Writing the conservation law (2.9) as c�+1 = c�−1 + δ�,1 (this form is also
valid when � = 1), we have

r�+1 − r�−1 = δ�,1 + zr�(r�+1r�+2 − r�−1r�−2)

= δ�,1 + zr�(r�+1(r�+2 − r�) + r�(r�+1 − r�−1) + r�−1(r� − r�−2)) (2.27)

from which we identify the solution of (2.26) as

f� = r�+1 − r�−1 = ry�−1 (1 − y)(1 − y2)2(1 − y2�+3)

(1 − y�)(1 − y�+1)(1 − y�+2)(1 − y�+3)
(2.28)

while

h� = r�+1r� − r�r�−1 = r2y�−1 (1 − y)(1 − y2)2(1 − y2�+3)

(1 − y�+1)2(1 − y�+2)2
. (2.29)

We therefore have the same relations (2.28) and (2.29) for the generating function of our
chains of well-balanced trees in terms of r� as those (1.7) and (1.8) we had for general trees.
This is not a surprise as, by a simple substitution argument as above, we may write directly

F�(g) = R1(g)f�(g(R1(g))2), H�(g) = (R1(g))2 h�(g(R1(g))2) (2.30)

so that (1.7) and (1.8) immediately translate into (2.28) and (2.29) upon taking g = g(z).
The almost well-balanced chains above are not fully well-balanced trees in general, but

this problem may now be cured by a simple inclusion–exclusion procedure. More precisely, in
the trees counted by f� or h�, condition (b) is automatically satisfied for all ascending subtrees
due to the presence of label 1 at the top of the tree which, from (i), guarantees that any vertex
�′ > 1 in the tree has an ancestor with label �′ − 1. Since we attached almost well-balanced

12
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subtrees to vertices of the spine, condition (b) is also satisfied for all descending subtrees except
possibly at vertices of the spine itself and only for the descending subtree consisting of the part
of the spine lying strictly below such a spine vertex, together with the attached subtrees (see
figure 5 for an illustration). Similarly, condition (a) is satisfied everywhere except possibly
along the spine where we may encounter bivalent vertices with label 1.

Let us denote by e� ≡ e�(z) (respectively g� ≡ g�(z)) the generating function for
fully well-labeled vertex-ended chains (respectively well-labeled corner-ended chains) with
conditions (a) and (b) also satisfied along the spine (see figures 5(c) and (d) for an illustration).
We explain below how to obtain e� and g� from f� and h� but let us first observe that, from the
bijection of section 2.1, e� and g� are good generating functions for quadrangulations with no
multiple edges. More precisely, e� is the generating function of rooted quadrangulations with
no multiple edges with a weight z per face and, in addition to their marked oriented root edge,
with a marked vertex at distance � from the origin of the root edge. Similarly, g� is precisely
the generating function of rooted quadrangulations with no multiple edges and in addition
with their marked oriented root edge, with an extra marked edge of type (� − 1) → �, i.e.
connecting a vertex at distance � − 1 from the origin of the root edge to a vertex at distance �.

These interpretations hold only for � > 1 while the case � = 1 requires more attention:
for convenience, if � = 1, we decide not to include in e1 = g1 the contribution 1 corresponding
to the trivial case where the spine (and consequently the entire tree) reduces to a single vertex
with label 1. In other words, the spine is required to have a non-zero length. Returning to
maps, this implies that e1 counts rooted quadrangulations with no multiple edges having an
extra marked vertex adjacent to the origin but different from the endpoint of the root edge.
We may reinstate the missing configurations by considering the generating function p1 + e1

instead. Similarly, g1 counts rooted quadrangulations with no multiple edges having an extra
marked edge incident to the origin but different from the root edge itself. Again we may
reinstate the missing configurations by considering p1 + g1.

Let us now relate e� and g� to f� and h�. By looking, in a configuration counted by h�,
at the first ‘unsatisfied’ vertex along the spine, with label k, we deduce the relation, valid for
� > 1,

h� = g� +

(
�−1∑
k=1

gkh�+1−k

)
+ g�(h1 − 1) (� > 1). (2.31)

The first term corresponds to the case where there is no unsatisfied vertex, leading to the
desired g�. The second term corresponds to a first unsatisfied vertex along the spine with label
k between 1 and �−1: the part of the tree lying above the unsatisfied vertex (including the left
and right subtrees attached to this vertex) has no unsatisfied vertex and final label k, hence is
counted by gk while the rest of the tree has no label k −1 and therefore has all its labels strictly
larger than k −1. Upon shifting all labels by k −1, we get a tree whose root is a leaf with label
1 and whose final vertex at the end of the spine has label �+ 1− k, and hence a tree counted by
h�+1−k . This situation incorporates the case (when k = 1) of label 1 along the spine with an
undesired descending subtree, counted by h�. The third term corresponds to having the first
unsatisfied vertex with label �, in which case we can repeat the above argument provided we
make sure that the descending subtree is not empty, resulting in a factor h1 − 1 instead of h1.
Finally, any vertex with label k > � along the spine cannot be unsatisfied due to the presence
of the vertex with label � at the end of the spine, which implies that all intermediate values of
labels appear in between along the spine. For � = 1, we have the relation

h1 = 1 + g1h1 (2.32)

13
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obtained by cutting a configuration counted by h1 at the first label 1 encountered along the spine
(and different from the root vertex). This relation, together with (2.31), can be summarized
into

h� = δ�,1 +
�∑

k=1

gkh�+1−k (2.33)

which allows us in principle to compute g� from the explicit form (2.29) of h�. Introducing a
new parameter t conjugate to � and the corresponding generating functions

ĥ(t, z) ≡
∑
��0

h�+1(z)t
�, ĝ(t, z) ≡

∑
��0

g�+1(z)t
�, (2.34)

equation (2.33) may be equivalently written as

ĥ(t, z) = 1 + ĝ(t, z)ĥ(t, z), i.e. ĝ(t, z) = 1 − 1

ĥ(t, z)
. (2.35)

As for e�, we have the relation, valid for � > 1,

f� = e� +

(
�−1∑
k=1

gkf�+1−k

)
+ g�(f1 − 1) (� > 1) (2.36)

obtained again by looking at the first unsatisfied vertex along the spine in a configuration
counted by f�. For � = 1, we have instead f1 = 1 + g1f1 while e1 = g1. We may therefore
write f1 = 1 + (e1 − g1) + g1f1 which can be summarized with (2.36) into

f� = δ�,1 + (e� − g�) +
�∑

k=1

gkf�+1−k. (2.37)

Introducing again

f̂ (t, z) ≡
∑
��0

f�+1(z)t
�, ê(t, z) ≡

∑
��0

e�+1(z)t
� (2.38)

we may rewrite (2.37) as

f̂ (t, z) = 1 + (ê(t, z) − ĝ(t, z)) + f̂ (t, z)ĝ(t, z), i.e. ê(t, z) = f̂ (t, z) − 1

ĥ(t, z)
(2.39)

where we used (2.35) to eliminate ĝ(t, z). This again allows us in principle to compute e�

from the explicit forms (2.28) and (2.29) of f� and h�.
Let us end this section by considering the generating function p� ≡ p�(z) of pointed

quadrangulations with no multiple edges, with a weight z per face and with, in addition to
their marked origin vertex, a marked edge of type (� − 1) → � with respect to this origin.
As we already discussed, we may exchange the role of the marked vertices and edges (see
figure 1 for an illustration), so that we may write

e� = p� + p�+1 (� > 1) (2.40)

while, for � = 1, we have e1 = p2 since we imposed in the configurations counted by e1 that
the marked vertex be different from the endpoint of the root edge; hence, the marked vertex
is at distance 2 from this endpoint. Recall finally that p1 counts rooted quadrangulations.
Introducing

p̂(t, z) ≡
∑
��0

p�+1(z)t
� (2.41)

14
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we may summarize the above relations into

ê(t, z) = e1(z) + p̂(t, z) − p1(z) +
p̂(t, z) − tp2(z) − p1(z)

t
,

i.e. p̂(t, z) = p1(z) +
t

1 + t
ê(t, z) = p1(z) +

t

1 + t

f̂ (t, z) − 1

ĥ(t, z)
(2.42)

with p1 as in (2.15).
Note that in the same way as e� and g� are the fully well-balanced counterparts of f� and

h�, p� may be viewed as the fully well-balanced counterpart of q�. Writing f� = q� + q�+1,
we may, after some simple algebra, rewrite (2.42) as

p̂(t, z) = p1(z) +
q̂(t, z) − 1

ĥ(t, z)
with q̂(t, z) ≡

∑
��0

q�+1t
�. (2.43)

3. Distance statistics in large quadrangulations with no multiple edges

3.1. Simple enumerations

As a non-trivial check of the formulas in section 2.4, we may verify some sum rules
by computing ê(1, z), ĝ(1, z) and p̂(1, z) which correspond to quadrangulations with two
marked ‘points’ (vertices or edges) without constraint on the distance. Using

∑�max
�=1 f� =

r�max+1 + r�max − r1, we deduce that

f̂ (1, z) = 2r − 1 (3.1)

while, from
∑�max

�=1 h� = r�max+1r�max , we get

ĥ(1, z) = r2. (3.2)

From (2.35) and (2.39), this leads to

ê(1, z) = 2
r − 1

r2
= 2zr =

∑
n�1

2(3n − 3)!

(2n − 1)!(n − 1)!
zn

ĝ(1, z) = 1 − 1

r2
= zr(r + 1) =

∑
n�1

2(3n − 3)!

(2n − 2)!n!
zn. (3.3)

These expressions are consistent with (2.15) as they give

ê(1, z)|zn

p1|zn

= n

ĝ(1, z)|zn

p1|zn

= 2n − 1 (3.4)

where we recognize the number n = (n + 2) − 2 of vertices different from the two extremities
of the root edge in a rooted quadrangulation and the number (2n − 1) of edges different from
the root edge. This is expected since in ê(1, z) (respectively ĝ(1, z)), there is no condition of
distance for the marked vertex (respectively the second marked edge).

Finally, from (2.42), we also have

p̂(1, z)|zn

p1|zn

= 1 +
n

2
= n + 2

2
(3.5)

consistent with the fact that p̂(1, z) and p1 both count maps with a marked edge, with an extra
origin vertex in p̂(1, z) (n + 2 choices) and an extra orientation for the marked edge in p1 (2
choices).
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From the explicit forms (2.28) and (2.29) of f� and h�, and via relations (2.33), (2.37)
and (2.40) (or their compact forms (2.35), (2.39) and (2.42)), we have an implicit access to
the desired functions e�, g� and p�. Explicit expressions may easily be obtained for the first
values of �. Taking � = 1, 2, 3, we deduce for instance the first terms in the z expansion of
p�, g� and e�:

p1(z) = 2z + z2 + 2z3 + 6z4 + 22z5 + 91z6 + 408z7 + 1938z8 + 9614z9 + · · ·
p2(z) = g1(z) = e1(z)

= z + z2 + 3z3 + 11z4 + 46z5 + 209z6 + 1006z7 + 5053z8 + 26 227z9 + · · ·
g2(z) = z + 2z2 + 7z3 + 29z4 + 132z5 + 639z6 + 3232z7 + 16 896z8 + 90 643z9 + · · ·
e2(z) = z + z2 + 3z3 + 12z4 + 55z5 + 272z6 + 1411z7 + 7565z8 + 41 560z9 + · · ·
p3(z) = z4 + 9z5 + 63z6 + 405z7 + 2512z8 + 15 333z9 + · · ·
g3(z) = 2z4 + 20z5 + 151z6 + 1030z7 + 6705z8 + 42 617z9 + · · ·
e3(z) = z4 + 9z5 + 64z6 + 422z7 + 2698z8 + 17 011z9 + · · · . (3.6)

More explicit distance-dependent results may be extracted from the above implicit form
of e�, g� or p� in the limit of large quadrangulations, i.e. when n → ∞. This can be done by
keeping � finite, giving rise to the so-called local limit, or by letting � scale as n1/4, leading to
the so-called scaling limit. Let us now discuss these two cases in detail.

3.2. Local limit laws for large quadrangulations with no multiple edges

The large n asymptotics of quadrangulations with no multiple edges may be extracted from
the singular behavior of the various generating functions above when z approaches its critical
value equal to 4/27 as apparent for instance in (2.13). Writing

z = 4

27
(1 − η2) (3.7)

we have for instance the small η expansion

p1 = 1

3
− 4

9
η2 +

8

27
√

3
η3 + · · · (3.8)

with no term proportional to η, so that the leading singular part of p1 is coded by the coefficient
of η3. We immediately deduce the large n behavior

p1|zn ∼
(

27

4

)n 8

27
√

3n5/2

1

�(−3/2)
=

(
27

4

)n 2

9
√

3πn5/2
(3.9)

a result which can alternatively be obtained from the explicit expression of p1|zn read off
(2.15). Similarly, we get from the explicit forms (2.28) and (2.29) of f� and h� small η

expansions for f̂ (t, z) and ĥ(t, z) of the form

f̂ (t, z) = Â(f )(t) + Ĉ(f )(t)η2 + D̂(f )(t)η3 + · · ·
ĥ(t, z) = Â(h)(t) + Ĉ(h)(t)η2 + D̂(h)(t)η3 + · · · (3.10)

with coefficients which can be computed explicitly, and with again a leading singular behavior
coded by the coefficient of η3. We deduce from (2.33) and (2.37) the expansions

ê(t, z) = Â(e)(t) + Ĉ(e)(t)η2 + D̂(e)(t)η3 + · · ·
ĝ(t, z) = Â(g)(t) + Ĉ(g)(t)η2 + D̂(g)(t)η3 + · · · (3.11)
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where, in particular,

D̂(e)(t) = D̂(h)(t) − Â(f )(t)D̂(h)(t) + Â(h)(t)D̂(f )(t)

(Â(h)(t))2

D̂(g)(t) = D̂(h)(t)

(Â(h)(t))2
. (3.12)

Doing the explicit computation for these two quantities, we find

D̂(e)(t) = 4(t + 1)

945
√

3t (1 − t)4(t (3t − 4) + 4(1 − t)Li2(t))2

× {t (12(1 − t)2 log(1 − t)(9t5 − 13t4 − 49t3 + 128t2 − 57t + 12)

+ t (−175t6 + 554t5 + 89t4 − 2292t3 + 2610t2 − 900t + 144)) − 12(1 − t)Li2(t)

× (12(1 − t)6 log(1 − t) + t (8t6 − 33t5 + 64t4 − 103t3 + 148t2 − 66t + 12))}
D̂(g)(t) = 16t3(t (35t4 − 151t3 + 236t2 − 114t + 24) − 24(1 − t)5Li2(t))

945
√

3(1 − t)4(t (3t − 4) + 4(1 − t)Li2(t))2
(3.13)

where Li2(t) = ∑
k�1

tk

k2 . These functions encode the average number 〈V�〉 of vertices at
distance � (respectively 〈E�〉 of edges of type (� − 1) → �) in rooted quadrangulations with
no multiple edges in the limit of large size n. Indeed, we have

〈V�〉 = δ�,1 + lim
n→∞

e�|zn

p1|zn

= δ�,1 +
27

√
3

8
D̂(e)|t�−1

〈E�〉 = δ�,1 + lim
n→∞

h�|zn

p1|zn

= δ�,1 +
27

√
3

8
D̂(g)|t�−1 (3.14)

or equivalently ∑
��0

t�〈V�+1〉 = 1 +
27

√
3

8
D̂(e)(t)

∑
��0

t�〈E�+1〉 = 1 +
27

√
3

8
D̂(g)(t). (3.15)

Expanding D̂(e)(t) and D̂(g)(t) at small t, we get for instance

〈V1〉 = 133
25 , 〈V2〉 = 1809

125 , 〈V3〉 = 90 747
3125

〈E1〉 = 133
25 , 〈E2〉 = 2727

125 , 〈E3〉 = 598 563
12 500 . (3.16)

For t → 1, we have

D̂(e)(t) ∼ 16

63
√

3

1

(1 − t)4
, D̂(g)(t) ∼ 32

63
√

3

1

(1 − t)4
(3.17)

from which we deduce the large � behaviors

〈V�〉 ∼ 1
7�3, 〈E�〉 ∼ 2

7�3. (3.18)

We may finally extract from the expansion of p̂(t, z) the average number 〈E�〉• of edges at
distance � from the origin now in the ensemble of pointed quadrangulations of fixed large size
n. We find

〈E1〉• = 4, 〈E2〉• = 432
25 , 〈E3〉• = 5076

125 , (3.19)

i.e. the statistics of neighbors are slightly different in rooted and pointed quadrangulations, as
expected. Still, for large �, we get

〈E�〉• ∼ 2
7�3 (3.20)

and pointed and rooted maps give rise to the same statistics in this limit.
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3.3. Scaling limit laws for large quadrangulations with no multiple edges

A non-trivial scaling limit is obtained by letting z tend to its critical value 4/27 and letting �

become large as

z = 4
27 (1 − η2), � = Lη−1/2 (3.21)

with η → 0 and L finite. Using the small η behavior y ∼ e−2α η1/2
with α = 31/4/

√
2, we find

the leading behavior

h� ∼ − 9
2η3/2 F ′(L; 31/4/

√
2) (3.22)

where we introduce the scaling function

F(L;α) = 2α2

3

(
1 +

3

sinh(αL)2

)
(3.23)

and where F ′ stands for the derivative of F with respect to L. We recognize here the scaling
function F encountered [13] when computing the scaling limit of the two-point function in
the context of general (with possibly multiple edges) quadrangulations. Note that the value of
α in this latter case is however different, equal to

√
3/2. This is not a surprise since, from the

substitution approach, the vicinity of the critical point z = 4/27 corresponds precisely to the
vicinity of the critical point g = 1/12 for general quadrangulations. From (2.19), we indeed
have the expansion

g
(

4
27 (1 − η2)

) = 1
12

(
1 − 1

3η2 + O(η3)
)

(3.24)

so that expanding in
√

1 − 27z/4 amounts to expanding in
√

3
√

1 − 12g and the change of
normalization by

√
3 simply translates into a change of the value of α by 31/4.

Rather than that of h�, let us now explore the scaling form of g� itself, which is relevant
to the statistics of distances in quadrangulations with no multiple edges. This requires a few
manipulations as follows. Right at the critical value z = 4/27, we have

h�(4/27) = 9
(2� + 3)

(� + 1)2(� + 2)2
(3.25)

so that, in the scaling limit (3.21), we may write at leading order in η

h�(z) − h�(4/27) ∼ η3/2

(
−9

2
F ′(L; 31/4/

√
2) − 18

L3

)
. (3.26)

Setting

t = 1 − sη1/2 (3.27)

this translates into

ĥ(t, z) − ĥ(t, 4/27) ∼ η

∫ ∞

0
dL e−sL

(
−9

2
F ′(L; 31/4/

√
2) − 18

L3

)
(3.28)

with, from (3.25),

ĥ(t, 4/27) = −9(t (3t − 4) + 4(1 − t)Li2(t))

4t3

= 9

4
+

3

4
(15 − 2π2)sη1/2 − 9

4
(s2η(4 log(sη1/2) + 2π2 − 13)) + O(η3/2). (3.29)

From (2.35), this leads to

ĝ(t, z) − ĝ(t, 4/27) ∼ 16

81
η

∫ ∞

0
dL e−sL

(
−9

2
F ′(L; 31/4/

√
2) − 18

L3

)
(3.30)
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with

ĝ(t, 4/27) = 1 − 1

ĥ(t, 4/27)

= 5

9
+

4

27
(15 − 2π2)sη1/2 − 8

81
(s2η(18 log(sη1/2) + 2π4 − 21π2 + 54)) + O(η3/2).

(3.31)

From the singular part of ĝ(t, 4/27) when t → 1 (i.e. s → 0), we deduce the large � behavior

g�(4/27) ∼ 32

9�3
= η3/2 32

9L3
(3.32)

and from (3.30), we deduce eventually

g� − g�(4/27) ∼ η3/2

(
−8

9
F ′(L; 31/4/

√
2) − 32

9L3

)

i.e. g� ∼ −8

9
η3/2F ′(L; 31/4/

√
2). (3.33)

The net result of passing from h� to g� is therefore a simple normalization factor (8/9 for g�

instead of 9/2 for h�). This factor is important as it will ensure a proper normalization of the
two-point function but g� behaves essentially as h� which, from the substitution approach, is
characterized by the same scaling function as for general quadrangulations, up to a change of
scale by 31/4.

Now the above result may be used to study the two-point distance statistics in the ensemble
of quadrangulations with no multiple edges having a fixed size n (= number of faces), in the
limit of large n . As explained in [13], the term of order zn in the various generating functions
above may be extracted by a contour integral in z which at large n translates via a saddle point
estimate into an integral over a real variable ζ upon setting

z = 4

27

(
1 +

ζ 2

n

)
. (3.34)

Setting now

� = rn1/4 (3.35)

we may use the above formulas with η = −iζ n−1/2 and L = √−iζ r to deduce the probability
ρ̃(r) that a marked edge picked uniformly at random in a rooted quadrangulation with no
multiple edges be at rescaled distance r from the root edge:

ρ̃(r) = lim
n→∞ n1/4 1

2n

g�|zn

p1|zn

= lim
n→∞ n1/4 1

2n

9
√

3π

2
n5/2 1

πn

∫ ∞

−∞
dζ(−iζ )e−ζ 2

(−iζ

n1/2

)3/2 (
−8

9

)
F ′(

√
−iζ r; 31/4/

√
2)

= 2
√

3√
π

∫ ∞

−∞
dζ iζ e−ζ 2F ′(r; 31/4/

√
2
√

−iζ ) (3.36)

where we used the self-similarity property F ′(u r;α) = u−3F ′(r;α u).
We could repeat all the above calculations for e� instead of g�. This leads to the same

scaling form ρ̃(r) for the probability that a marked vertex picked uniformly at random in a
rooted quadrangulation with no multiple edges be at rescaled distance r from the root edge.
This is expected as vertices cannot be distinguished from edges in the scaling limit. We could
also use p� and again, we would get the same scaling form for the probability that a marked
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edge picked uniformly at random in a pointed quadrangulation with no multiple edges be at
rescaled distance r from the root origin vertex.

We may now compare the above result with the density of points (vertices or edges) at
distance � = rn1/4 in general quadrangulations of size n, in the limit n → ∞. It is given by
[13]

ρ(r) = 2√
π

∫ ∞

−∞
dζ iζ e−ζ 2F ′(r;

√
3/2

√
−iζ ) (3.37)

so that, using again the self-similarity of F ′, we may write

ρ̃(r) = 1

31/4
ρ

( r

31/4

)
. (3.38)

This may be viewed as a manifestation of the universal nature of the two-point function, which
is the same for the two classes (with or without multiple edges) of maps, up to some global
(non-universal) scale. In the present case, this universality can simply be traced back in the
calculations and comes from the fact that passing from H� to h� is a simple substitution g ↔ z

(which explains the factor 31/4) and then passing from h� to g� simply amounts to some global
normalization.

Since the rescaled distance is obtained by normalizing the original distance by n1/4, the
rescaling factor above states that general quadrangulations with size n are asymptotically
isometric to quadrangulations with no multiple edges of size (n/3). This result is consistent
with the heuristic picture of a general quadrangulation as made of a large component, the
‘mother universe’, with no multiple edges and of typical size n/3, and of small components,
the ‘baby universes’, of finite extension. The two-point function of general quadrangulations
is entirely dictated by the distance statistics in their mother universes. This is because the
parts of geodesics lying in baby universes are of negligible length.

4. Mother universe and minbus in general quadrangulations

In this section, we return to the case of general quadrangulations and discuss their geometry in
the light of our new results. As just explained, the geometry of the mother universe itself is well
captured by the two-point function. In contrast, this two point-function is blind to the geometry
of minimal neck baby universes. Here we compute a number of distance-dependent quantities
characterizing the minbus. To this end, let us first discuss how our various generating functions
for almost well-balanced trees translate into the language of general quadrangulations. Their
meaning is best captured by reformulating the substitution of section 2.3 directly at the level
of the maps.

4.1. Substitution for rooted maps

Out of any rooted general quadrangulation, we may extract a quadrangulation with no multiple
edges as follows. Consider two fixed vertices adjacent in the quadrangulation and connected
by exactly k edges (k � 1), which we may orient for convenience from the vertex closest
to the origin of the root edge to the other vertex. These edges separate the map into k
elementary domains and the root face of the map, i.e. the face immediately on the left of
the root edge, belongs to exactly one of them. Let us consider the ‘outgrowth’ formed by
the union of the (k − 1) elementary domains not containing the root face. This outgrowth
is either empty (if k = 1) or it is a quadrangulation with a boundary of length 2 which,
upon continuous deformation in the sphere, may be glued into a single oriented edge. The
outgrowth may therefore be described as a (possibly empty) rooted quadrangulation itself.
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Moreover, if we now consider all pairs of vertices linked by more than one edge, and the
corresponding (non-empty) outgrowths, the interiors of these outgrowths form a forest (i.e.
any two of them are either disjoint or included one into the other), which allows us to select
maximal outgrowth (i.e. those not contained in a bigger one). If we now squeeze into a
single edge each of these maximal outgrowths, we end up with a quadrangulation with no
multiple edges which is naturally rooted at the original root edge. Conversely, a general
rooted quadrangulation is obtained from a quadrangulation with no multiple edges by inflating
each edge into an outgrowth as above. If we assign a weight g per face of the general
quadrangulation, the generating function describing a squeezed outgrowth is that, R1(g), of
rooted quadrangulations (including a first term 1 in R1 for the empty case). This results in the
identity

R1(g) = 1 + p1(g(R1(g))2) (4.1)

relating the generating function R1 of rooted general quadrangulations to that p1 of rooted
quadrangulations with no multiple edges. In (4.1), we used the fact that there are twice as
many edges as faces in a quadrangulation, so assigning a weight g per face and a weight
R1(g) per edge is equivalent to assigning a weight z = g (R1(g))2 per face only. Introducing
z(g) as in (2.19), and its inverse g(z), equation (4.1) reads p1(z) = R1(g(z)) − 1. Using
R1 = R − gR3 = (1 + 3gR2)(1 − gR2) at g = g(z) (where gR2 = zr2), we recover
p1 = (1 + 3zr2)(1 − zr2) − 1 = zr(3 − r) as expected. The above construction allows us to
define for each rooted quadrangulation its core, which is the rooted quadrangulations with no
multiple edges obtained after the squeezing procedure.

The above connection was studied in detail in [15] in the slightly different, but equivalent
context of general and 2-connected maps. Translated into our language, the result is that,
in the ensemble of rooted quadrangulations with a fixed size n, and in the limit n → ∞,
the law for the size (number of faces) of the core is bimodal: with probability 2/3, the
core remains finite while, with probability 1/3, it is macroscopic, of size n/3 + αn2/3 with
α distributed according to a standard Airy distribution. Rather than focusing on the core
itself, which depends strongly on the choice of root edge, one may fully decompose the rooted
quadrangulation into components with no multiple edges by applying recursively the squeezing
procedure inside each of the squeezed outgrowths (which may themselves be viewed as rooted
quadrangulations as explained above). Alternatively, this procedure amounts to disconnecting
the map into pieces by cutting along all its minimal necks, which are the cycles of length 2
in the map and then gluing the necks into single edges. Each of the obtained component is a
rooted quadrangulation with no multiple edges. In the limit of large n, the largest component
has size n/3 + αn2/3 as above while the second largest one has size at most n2/3. Adopting the
terminology of quantum gravity, the largest component defines precisely the mother universe,
while the other components, once reglued together, form the minimal neck baby universes
(minbus). A detailed heuristic discussion of minbus can be found in [16]. In particular, it is
shown that, in all generality, the largest minbu has a size of order n1/(1−γstring) where γstring is
the so-called string susceptibility exponent, equal to −1/2 for pure gravity.

4.2. Substitution for maps with two marked points

The above squeezing procedure dealt with quadrangulations with a marked root edge only,
as counted by R1. We now wish to apply a similar squeezing procedure to the configurations
with two marked points (edge or vertex) distant by �. More precisely, let us start with general
rooted quadrangulations with an extra marked vertex at distance � from the origin of the root
edge, as counted by F�. Let us suppose first that � > 1 so that, in particular, the marked
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1

0

Figure 6. The squeezing procedure for a rooted map with a marked vertex at distance � (distinct
from the endpoint of the root edge if � = 1). If the root edge itself is a multiple edge, we squeeze all
the associated elementary domains (filled regions) except that containing the marked vertex. For
any other pair of vertices linked by multiple edges, we squeeze the associated elementary domains
(filled regions) except that containing the root edge and that containing (strictly) the marked vertex.
These two unsqueezed domains may be the same or not. In practice, it is sufficient to squeeze the
maximal domains only.

vertex is different from the endpoint of the root edge. If the extremities of the root edge are
linked by k > 1 edges, delimiting k elementary domains, we start by squeezing into a single
oriented edge the outgrowth formed by the union of the (k − 1) such elementary domains not
containing the marked vertex (see figure 6 for an illustration). This oriented edge becomes the
new root edge. Note that the choice of outgrowth here is slightly different from that adopted
above for rooted quadrangulations without a marked vertex. In particular the outgrowth is
now formed in general of two pieces, one on each side of the original root edge, and separated
on the sphere by the marked vertex. Its contribution to F� is thus counted by (R1(g))2. For
any other pair of vertices, we look at the outgrowth formed by the union of all the associated
elementary domains except that containing the root edge and, if the marked vertex is not one of
the two vertices in the pair, that containing the marked vertex. Note that this second excluded
elementary domain may be the same as the first one or not, so that the outgrowth consists
either of one connected piece or of two pieces separating the root edge from the marked vertex
(see figure 6). Considering all pairs of vertices linked by more than one edge, the interior of
the corresponding (non-empty) outgrowths forms again a forest among which we select the
maximal outgrowths that we squeeze into single edges. After squeezing, we end up with a
rooted quadrangulation with an extra marked vertex at distance � from the origin of the root
edge, and satisfying

(1) all edges are simple or double edges;
(2) the root edge is a simple edge;
(3) a double edge necessarily separates strictly the root edge from the marked vertex.

The fact that the marked vertex is still at distance � from the origin of the root edge is because
the original geodesic paths never enter strictly the outgrowths which have been squeezed, so
these paths are still present in the squeezed object and no shorter path has been created. If we
denote by f�(z) the generating function for such quadrangulations with a weight z per face,
the above substitution procedure translates into the relation

F�(g) = R1(g) f�(g(R1(g))2) (4.2)

since each edge of the quadrangulations counted by f� has to be substituted by an outgrowth
(counted by R1(g)), except for the root edge whose outgrowth is counted by (R1(g))2, hence
the extra multiplicative factor R1(g). The above relation precisely matches (2.30), so our new
definition of f� matches its former definition of section 2.4 in terms of chains of trees. In other
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+

1

0f = δ ,1

Figure 7. The generating function f� enumerates rooted quadrangulations with a marked vertex
at distance � from the origin of the root edge (and different from its endpoint if � = 1), with only
single and double edges. The root edge is necessarily a single edge and double edges necessarily
separate (strictly) the marked vertex from the root edge. For � = 1, a term 1 is added to f� to
guarantee relation (4.2) or equivalently (2.30).

1

−1

0

Figure 8. The squeezing procedure for a rooted map with a marked edge of type (�− 1) → � with
respect to the origin of the root edge (and whose endpoint is distinct from the endpoint of the root
edge if � = 1). If the root edge itself is a multiple edge, we squeeze all the associated elementary
domains (filled regions) except that containing the marked vertex. Similarly, if the marked edge
is a multiple edge, we squeeze all the associated elementary domains (filled regions) except that
containing the root edge. For any other pair of vertices linked by multiple edges, we squeeze
the associated elementary domains (filled regions) except that containing the root edge and that
containing the marked edge. These two unsqueezed domains may be the same or not. In practice,
it is sufficient to squeeze the maximal domains.

words, we end up with a direct interpretation of the quantity f� of section 2.4 as counting
rooted quadrangulations with a marked vertex at distance �, and satisfying (1)–(3) above.

If � = 1, i.e. if we start with a rooted quadrangulation with an extra marked vertex at
distance 1 from the origin, we may apply exactly the same squeezing procedure provided
that the marked vertex be different from the endpoint of the root edge. If the marked vertex
happens to be the endpoint of the root edge, we decide to squeeze all the associated elementary
domains, resulting into a trivial object made of the root edge itself. This procedure ensures
that equation (4.2) above holds for � = 1: f1(z) contains a constant term 1 accounting for
the trivial case above while f1(z) − 1 is the generating function for rooted quadrangulations
with an extra marked vertex adjacent to the origin but non-incident to the root, and satisfying
(1)–(3) above. The interpretation of f� for � � 1 is illustrated in figure 7.

As for H�, recall that it counts rooted general quadrangulations with an extra marked edge
of type (� − 1) → � with respect to the origin of the root edge. Assuming again that � > 1
so that this marked edge has an endpoint different from that of the root edge, we squeeze the
outgrowths on both sides of the root edge and on both sides of the marked edge, transforming
these edges into single edges (see figure 8). Repeating the above arguments, we see that, upon
squeezing of the maximal outgrowth not containing the two marked edges, H� is related via
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Figure 9. The generating function h� enumerates rooted quadrangulations with a marked edge of
type (� − 1) → � with respect to the origin of the root edge (and with its endpoint different from
the endpoint of the root edge if � = 1), with only single and double edges. The root edge and the
marked edge are necessarily single edges and double edges necessarily separate the marked edge
from the root edge. For � = 1, a term 1 is added to h� to guarantee relation (2.30).

(2.30) to the generating function h�(z) for rooted quadrangulations with an extra marked edge
of type (� − 1) → � with respect to the origin of the root edge, and satisfying

(1)′ all edges are simple or double edges;
(2)′ the root edge and the extra marked edge are simple edges;
(3)′ a double edge necessarily separates strictly the root edge from the extra marked edge.

Again when � = 1, equation (2.30) still holds with h1 composed of a trivial constant
term 1 (accounting for the case where the root edge and the extra marked edge have the
same endpoint in the configuration counted by H1) and of the generating function h1 − 1 of
rooted quadrangulations with an extra marked edge incident to the origin of the root edge but
with a different endpoint, and satisfying (1)′–(3)′. This interpretation of h� is illustrated in
figure 9.

We may now easily understand relations (2.31) and (2.36) directly in the language of
quadrangulations. From (3) or (3)′, the double edges in f� or h� are necessarily nested and
of type (k − 1) → k for increasing (non-necessarily consecutive) values of k in the range
[1, �], if we sort them from the root edge to the marked vertex (respectively edge) at distance
�. Moreover, the marked vertex (respectively the endpoint of the marked edge) at distance
� from the origin of the map is at distance � + 1 − k of the first extremity (i.e. the vertex at
distance k − 1 from the origin of the map) of any double edge of type (k − 1) → k. This is
because any geodesic path from the origin to the marked vertex (respectively endpoint) must
pass through one of the extremities of the double edge and we can always find one geodesic
passing through the first extremity with label (k − 1).

Starting now from a configuration counted by f� (respectively h�), if it contains no double
edge, it is then a configuration counted by e� (respectively g�). Otherwise, looking at the
double edge closest to the root edge, i.e. corresponding to the smallest value of k above, this
double edge separates the map into two domains: one containing the root edge and the other
the marked vertex (respectively edge) at distance �. Upon squeezing this latter domain into a
simple edge of type (k − 1) → k, we end up with a rooted quadrangulation with no multiple
edges and with a marked edge of type (k − 1) → k, hence counted by gk. The squeezed
domain is a quadrangulation with a boundary of length 2 which, upon continuous deformation
in the sphere, can be glued into a single oriented edge which defines a new root edge. This
gives rise again to a rooted quadrangulation with now a marked vertex (respectively edge) at
distance (� + 1 − k) (respectively of type (� − k) → (� + 1 − k)) with respect to the origin of
the new root edge. The squeezed domain satisfies conditions (1)–(3) (respectively (1)′–(3)′)
and the corresponding generating function is therefore f�+1−k (respectively h�+1−k) for k < �
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and (f1 − 1) (respectively h1 − 1) if k = �. This leads to the desired relations (2.36) and
(2.31) for � > 1. As before the case � = 1 requires more care but it is easily seen to reproduce
the relations of the previous section.

Finally, from f� = r�+1 − r�−1 = q� + q�+1, we have, via a simple re-rooting, an
interpretation of q� for � > 1 as counting pointed quadrangulations with a marked edge
of type (� − 1) → � satisfying

(1)′′ all edges are simple or double edges;
(2)′′ the marked edge is a simple edge;
(3)′′ a double edge necessarily separates strictly the origin from the marked edge.

4.3. Geometry of minbus

We may use the above interpretation of our generating functions to explore the geometry of
minbus. We consider in this section the ensemble of bi-rooted quadrangulations where the two
marked edges are at distance �, as enumerated by H�. For any configuration in this ensemble,
the squeezing procedure in section 4.2 produces a bi-rooted configuration with again its two
marked edges at distance �, and satisfying (1)′–(3)′ above. We shall call this configuration
the kernel of the bi-rooted quadrangulation. Note that this is a notion slightly different from
the core as it involves two marked edges rather than one. In particular, the kernel may now
contain double edges which correspond to minimal necks encountered along any geodesic path
linking the origins of the two marked edges. If we decompose as before the quadrangulation
into components with no multiple edge, the kernel may then be viewed as a linear sequence
of such components glued via minimal necks. We may now condition the size of the original
quadrangulation to be n and compute the probability that its kernel has size (= number of
faces) k. It simply reads

P(n)
� (k) =

h�|zk × R2
1

(
gR2

1

)k∣∣
gn

H�|gn

(4.3)

and, at large n, the leading behavior of the gn coefficients may be extracted by a simple
singularity analysis. Setting g = 1

12 (1 − ε2), we have

H� = A� + C�ε
2 + D�ε

3 + · · ·
with D� = 8�(� + 3)(2� + 3)(5�4 + 30�3 + 67�2 + 66� + 28)

35(� + 1)2(� + 2)2
(4.4)

while

R2
1

(
gR2

1

)k = 16

9

(
4

27

)k

(1 − (2 + 3k)ε2 + 4(1 + k)ε3 + · · ·). (4.5)

Picking the singular (∝ ε3) term, we get when n → ∞

P(∞)
� (k) = 64

9D�

h�|zk (1 + k)

(
4

27

)k

. (4.6)

For � = 1, which corresponds to two marked edges having the same origin, we have in
particular a probability P(∞)

1 (0) = 2/7 that the kernel be empty, which happens when the
marked edges also have the same endpoint. More interestingly, if we sum P(∞)

� (k) over all
(finite) values of k, we get the probability that the kernel remains finite:

∞∑
k=0

P(∞)
� (k) = 64

9D�

(
h�

(
4

27

)
+

4

27
h′

�

(
4

27

))

= 14(�2 + 3� + 4)

5�4 + 30�3 + 67�2 + 66� + 28
��1∼ 14

5�2
. (4.7)
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This is the probability that the kernel does not include the mother universe as one of its
components, i.e. the probability that we may go from one edge to the other without entering
the mother universe. In other words, this is nothing but the probability that the two marked
edges lie in the same baby universe. This probability tends to 0 at large � like 1/�2.

By a slight change of normalization in the above calculation, we may return to the
ensemble of rooted quadrangulations of size n and compute the average number of edges
lying at distance � from the root edge and defining with this root edge a kernel of size k. This
number is given by

N (n)
� (k) =

h�|zk × R2
1

(
gR2

1

)k
∣∣∣
gn

R1|gn

n→∞∼ 8

3
h�|zk (1 + k)

(
4

27

)k

. (4.8)

Upon summing over all (finite) values of k, we get

∞∑
k=0

N (∞)
� (k) = 8

3

(
h�

(
4

27

)
+

4

27
h′

�

(
4

27

))

= 6�(� + 3)(2� + 3)(�2 + 3� + 4)

5(� + 1)2(� + 2)2

��1∼ 12

5
� (4.9)

which gives the average number of edges at distance � from the root edge and lying in the same
baby universe as this root edge. Indeed keeping k finite precisely amounts to conditioning the
counted edge to lie in the same baby universe as the root edge. The above quantity may in
this sense be viewed as the two-point function inside a minbu, which grows like � at large �

instead of �3 for the local limit of the complete two-point function. Note that, even though the
total size n is fixed, the size of the considered minbu (that containing the root edge) is here a
fluctuating quantity so that our two-point function inside a minbu corresponds in practice to
a grand-canonical ensemble of minbus (technically this explains why it involves the regular
part of h� rather than its singular part).

Returning to the ensemble of quadrangulations with two marked edges at distance � and
conditioning again the size n, we may also consider the probability w

(n)
� (m) that the two

marked edges at distance � be separated by exactly m minimal necks. This probability is
computed in the appendix in the limit n → ∞. It takes the simple form

w
(∞)
� (m) → 16

81 (m + 1)
(

5
9

)m
for � → ∞. (4.10)

Note that
∑

m�0
16
81 (m + 1)

(
5
9

)m = 1, which means that, even if the two marked edges
are far apart, there is still a finite number of minimal necks to go through to reach one from
the other. Now for � → ∞, the two marked edges lie with probability 1 into two different
baby universes and we moreover expect that a geodesic path between them goes through, say
m1 minimal necks in the vicinity (i.e. at a distance which remains finite when � → ∞) of the
first edge, then travels a distance of order � in the mother universe, and finally goes through
m2 minimal necks in the vicinity of the second edge. The distribution of minimal necks in
the vicinity of one of the two edges is a local property which does not depend on the second
edge (provided it is far enough) and simply describes how the first edge is linked to the mother
universe. The law ℘(m1) for m1 and that for m2 are the same by symmetry, and we have

16

81
(m + 1)

(
5

9

)m

=
∑

m1+m2=m

℘(m1)℘ (m2) (4.11)
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from which we deduce the law for the number m1 of minimal necks to go through to reach the
mother universe from the first edge:

℘(m1) = 4
9

(
5
9

)m1
. (4.12)

In particular, we have a probability ℘(0) = 4/9 that the first component of the kernel, i.e.
that closest to the first edge, be the mother universe itself. Note that this probability is slightly
greater than the known probability 1/3 that the marked edge belongs to the mother universe.
This is because, with our definition of kernel, it is sufficient for having m1 = 0 that the first
edge has the same extremities as an edge belonging to the mother universe. Note that the law
℘(m1) is in practice a property of simply rooted quadrangulations and that the introduction of
the second edge at distance � was only instrumental in the calculation.

In the same spirit, we may more precisely study the law for the distance from the origin of
the root edge to the mother universe in large rooted quadrangulations. The detailed calculation
is presentated in the appendix. When n → ∞, we find a probability

π(D) = 4(5 + 2D)

(D + 2)2(D + 3)2
(4.13)

that the root edge be at a distance D from the mother universe.

5. Discussion and conclusion

In this paper, we have presented a detailed calculation of the two-point function for
quadrangulations with no multiple edges, based on a coding of these maps by well-balanced
well-labeled trees. These trees could be enumerated exactly, for instance via a simple
substitution procedure relating the known generating functions (Q�, F� and H�) for regular
well-labeled trees to generating functions (q�, f� and h�) for almost well-balanced trees and
by then extracting from these generating functions the contributions (p�, e� and g�) of fully
well-balanced ones.

In the scaling limit, the two-point function of quadrangulations with no multiple edges
of size n matches precisely that of general quadrangulations of size 3n. This is consistent
with the picture of a general quadrangulation of size 3n as made of a mother universe with
no multiple edges of size n with attached baby universes of size negligible with respect to
n. In large general quadrangulations, two generic points at a large mutual distance will lie
in different baby universes so that the geodesics between them will travel mostly within
the mother universe. More precisely, the probability that two marked points at distance � lie
in the same baby universe tends to zero like 1/�2 and by taking � → ∞, we may therefore
guarantee that any path linking them enters the mother universe. We used this property to
compute the law for the distance of a random point to the mother universe or for the number
of necks to go through to reach this mother universe.

A different two-point function is obtained by conditioning the two marked points to lie in
the same baby universe, which can be done by requiring that the associated kernel be finite. In
this case, the geodesics between the two points do not enter the mother universe and this leads
to a new two-point function inside a baby universe, which we computed in the local limit. At
large distance �, it grows as � instead of �3.

Our results deal with minimal neck baby universes only, which, as apparent on the
two-point function, disappear in the scaling limit of large maps. Still, a more general baby
universe structure should remain visible in the scaling regime, involving larger necks of size
of order n1/4. This structure is revealed for instance by the phenomenon of confluence of
geodesics, but no precise rigorous statement was made so far to corroborate this picture. In
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this respect, it would of course be desirable to be able to eliminate cycles of arbitrary size in
large quadrangulations. We however here face the problem of having a canonical prescription
of which cycles to eliminate and which to retain in the mother universe. The case of cycles
of length 4 in quadrangulations with no multiple edges is still tractable and removing non-
contractible cycles of length 4 is known to correspond in the equivalence with general maps
to going from 2-connected to 3-connected ones. Keeping track of distances while removing
these cycles seems to be a tractable issue.

A much simpler question is that of more general maps, for instance 2p-angulations
(p > 2) with no multiple edges. We have indeed a well-labeled mobile description of these
maps [23] in general and removing double edges again simply amounts to making these
mobiles well-balanced. By a simple substitution procedure, we can obtain the generating
function p1 of rooted 2p-angulations with no multiple edges with a weight z per face:

p1 = z

(
2p − 1

p

)
rp−1 −

(
2p − 1

p + 1

)
rp

with r = 1 + z

(
2p − 1

p + 1

)
rp+1 (5.1)

and there seems to be no technical problem to address the question of the distance-dependent
two-point function in this case.

Finally, it seems also possible to address the question of the three-point function in
quadrangulations with no multiple edges. Again we expect to recover at large distances that
of general quadrangulations, up to a global rescaling of the size by a factor of 3.

Appendix

We consider here the ensemble of quadrangulations with two marked edges at distance � and
with size n. The probability w

(n)
� (m) that the two marked edges be separated by exactly m

minimal necks reads (for � � 1)

w
(n)
� (m) =

R2
1

(
δm,0 +

[
ĝ
(
t, gR2

1

)]m+1)∣∣
t�−1gn

H�|gn

=
R2

1

(
δm,0 +

[
1 − R2

1

Ĥ (t,g)

]m+1
)∣∣∣∣

t�−1gn

H�|gn

(A.1)

where we used ĝ(t, z(g)) = 1 − 1/ĥ(t, z(g)) = 1 − R2
1/Ĥ (t, g) upon introducing

Ĥ (t, g) ≡
∑
��0

H�+1(g)t�. (A.2)

To extract the large n leading behavior of the gn coefficients, we use the expansions

R2
1 = 16

9 (1 − 2ε2 + 4ε3 + · · ·) (A.3)

and

Ĥ (t, g) = Â(H)(t) + Ĉ(H)(t)ε2 + D̂(H)(t)ε3 + · · · (A.4)

with, in particular,

Â(H)(t) = 4(−3t2 + 4Li2(t)t + 4t − 4Li2(t))

t3

t→1→ 4

D̂(H)(t) =
∑
��0

D�+1t
� t→1∼ 96

7(1 − t)4
. (A.5)
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Picking the leading singularity (coefficient ∝ ε3) of both the numerator and the denominator
of (A.1), we deduce that, for n → ∞,

w
(∞)
� (m) =

16
9

[
1 − 16

9Â(H)(t)

]m [
4
(

1 − 16
9Â(H)(t)

+ δm,0

)
+ 16(m+1)

9Â(H)(t)

(
D̂(H)(t)

Â(H)(t)
− 4

)]∣∣∣
t�−1

D̂(H)(t)|t�−1

��1∼
(

16

9Â(H)(1)

)2

(m + 1)

[
1 − 16

9Â(H)(1)

]m

= 16

81
(m + 1)

(
5

9

)m

(A.6)

since the large � behavior is entirely dictated by the t → 1 limit.
We may alternatively study the law for the distance from the origin of root edge to the

mother universe in large rooted quadrangulations. It may be obtained by first computing the
law for the distance to the first minimal neck to go through to reach the mother universe. We
call this distance d if the first minimal neck is formed of two d → (d + 1) edges. We have in
particular d = 0 if the first neck consists of two 0 → 1 edges, with the extremity at distance
1 necessarily different from the extremity of the root edge. By convention, if the root edge
already ‘touches’ the mother universe (i.e. belongs to the mother universe or has the same
extremities as an edge belonging to the mother universe), we set d = ∞ as there is no first
minimal neck in this case. The probability law for d may again be obtained by temporarily
introducing a second marked edge at distance � and then sending � → ∞. It reads

P(d) = lim
�→∞

lim
n→∞

R2
1 gd+1

(
gR2

1

)
h�−d

(
gR2

1

)∣∣
gn

H�|gn

= lim
�→∞

(
1 − 16

9Â(H)(t)

)∣∣∣
td

D̂(H)(t)|t�−d−1 +
(

16
9Â(H)(t)

(
D̂(H)(t)

Â(H)(t)
− 4

))∣∣∣
td

Â(H)(t)|t�−d−1

D̂(H)(t)|t�−1

=
(

1 − 16

9Â(H)(t)

)∣∣∣∣
td

(A.7)

or equivalently∑
d�0

P(d)td = 1 − 16

9Â(H)(t)
= 1

5
+

7

25
t +

79

2500
t2 +

699

50 000
t3 +

1910 211

245 000 000
t4 + · · · (A.8)

where we explicited the first values of P(d) for d = 0, 1, 2, 3, 4. We have in particular
a probability

∑
d�0 P(d) = 5/9 that we have to go through at least a minimal neck to

reach the mother universe and, if so, the distance to this minimal neck is on average∑
d�0 d P (d)/

∑
d�0 P(d) = (4/5)(2π2/3 − 5) = 1.263 79 . . . . The complementary

probability 4/9 is that of the event of a root edge touching the mother universe. This is
consistent with the value ℘(0) = 4/9. For large d, we find from the singular behavior of
A(H)(t) at t = 1 that P(d)/

∑
d�0 P(d) ∼ 32/(5d3). Note that along the same lines, we can

as well compute the joint probability for the distance d to the first minimal neck and for the size
k of the component linking the root edge to this neck. We find a probability gd+1|zk (4/27)k ,
which, as it should adds up to P(d) upon summing over k.

Consider now the total distance D from the origin of the root edge to the mother universe
in large quadrangulations. This distance is 0 if the root edge touches the mother universe or if
it is separated from the mother universe only by (nested) necks made of pairs of 0 → 1 edges
only. The law for D may be deduced from P(d) above upon writing

π(D) = 4
9δD,0 + P(D) 4

9 + P ∗ P(D) 4
9 + P ∗ P ∗ P(D) 4

9 + · · · (A.9)
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where P ∗ Q(D) = ∑D
d=0 P(D)Q(d − D) is a simple convolution. Indeed, any geodesic

path to the mother universe generically crosses a number m of necks and may accordingly be
decomposed into m pieces whose lengths add up to D and share the same probability law P.
This leads to a probability P ∗m(D), to be summed over m. We get finally∑

D�0

π(D)tD = 4

9

1

1 − ∑
D�0 P(D)

tD

= Â(H)(t)

4
=

∑
D�0

AD+1

4
tD (A.10)

with in particular
∑

D�0 π(D) = 1. We deduce

π(D) = AD+1

4
= 4(5 + 2D)

(D + 2)2(D + 3)2
. (A.11)

In particular, the average distance is 2π2/3 − 5 = 1.579 74 . . . and for large D, we have
π(D) ∼ 8/D3.
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